Search results for " 65M12"

showing 2 items of 2 documents

Towards Stable Radial Basis Function Methods for Linear Advection Problems

2021

In this work, we investigate (energy) stability of global radial basis function (RBF) methods for linear advection problems. Classically, boundary conditions (BC) are enforced strongly in RBF methods. By now it is well-known that this can lead to stability problems, however. Here, we follow a different path and propose two novel RBF approaches which are based on a weak enforcement of BCs. By using the concept of flux reconstruction and simultaneous approximation terms (SATs), respectively, we are able to prove that both new RBF schemes are strongly (energy) stable. Numerical results in one and two spatial dimensions for both scalar equations and systems are presented, supporting our theoret…

Work (thermodynamics)AdvectionScalar (physics)Numerical Analysis (math.NA)35L65 41A05 41A30 65D05 65M12Stability (probability)Computational Mathematics10123 Institute of Mathematics510 MathematicsComputational Theory and MathematicsModeling and SimulationPath (graph theory)FOS: MathematicsApplied mathematicsRadial basis functionBoundary value problemMathematics - Numerical Analysis2605 Computational MathematicsEnergy (signal processing)Mathematics2611 Modeling and Simulation1703 Computational Theory and Mathematics
researchProduct

Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux

2016

We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …

Crowd dynamicsMathematical optimizationFixed point argumentsDiscretizationGeneral MathematicsScalar (mathematics)Crowd dynamics; Finite volume approximation; Nonlocal point constraint; Scalar conservation law; Vehicular traffics; Well-posedness; Mathematics (all); Applied Mathematics01 natural sciencesMSC : 35L65 90B20 65M12 76M12NONonlocal point constraintCrowdsData acquisitionMathematics (all)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]DoorsUniqueness[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalar conservation lawMathematicsConservation lawVehicular trafficsFinite volume methodApplied Mathematics010102 general mathematics[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]010101 applied mathematicsWell-posednessFinite volume schemeFinite volume approximationConvergence of approximations[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Journal de Mathématiques Pures et Appliquées
researchProduct